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Places for density in the calculus sequence

I integral calculus: as examples of constructing definite
integrals for non-geometric quantities (in place of more
traditional work and pressure examples)

I multivariate calculus: primary motivation/interpretation for
double, triple, line, and surface integrals (of scalar-valued
functions)

I start with addressing the conception of density students bring
to the calculus sequence



Places for density in the calculus sequence

I integral calculus: as examples of constructing definite
integrals for non-geometric quantities (in place of more
traditional work and pressure examples)

I multivariate calculus: primary motivation/interpretation for
double, triple, line, and surface integrals (of scalar-valued
functions)

I start with addressing the conception of density students bring
to the calculus sequence



Places for density in the calculus sequence

I integral calculus: as examples of constructing definite
integrals for non-geometric quantities (in place of more
traditional work and pressure examples)

I multivariate calculus: primary motivation/interpretation for
double, triple, line, and surface integrals (of scalar-valued
functions)

I start with addressing the conception of density students bring
to the calculus sequence



Student conceptions of density

I when asked “What is density?” my students typically respond
“Density is mass divided by volume.”

I conjecture: students benefit from explicit instruction to help
generalize this initial notion of density

I generalizations include

I from mass to other quantities (number, cost, charge,
probability,. . . )

I from volume to length and area
I from uniform to non-uniform

I start with a handout to introduce these generalizations in two
steps
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Step 1: different quantities and different dimensions

I straightforward questions that involve only multiplication

I introduce notation: λ for length density, σ for area density,
and ρ for volume density

1. The density of aluminum is about 2 g/cm3. Determine the
mass of an aluminum cube with sides of length 2 cm.

2. A particular type of rope has a length density of λ = 0.15 kg
per meter. What is the mass of a 3 meter piece of this rope?

3. A standard type of newsprint has an area density of
48.8 g/m2. Determine the mass of a roll of this newprint that
is 2 meters wide and 100 meters long.

4. Bacteria in a circular petri dish are distributed uniformly with
a number density of 5.4× 103 per cm2. What is the number
of bacteria in a dish of radius 5.5 cm?

5. Charge is distributed uniformly on a circular ring with a
charge density of −4.21× 10−6 Coulombs per cm. What is
the total charge on a ring of radius 1.2 cm?
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Step 2: density with a non-uniform distribution

I view of density as factor relating quantity to volume (or area
or length)

I uniform distribution: “total equals density times volume”
I non-uniform distribution:

I “small contribution to total equals density (at a point) times
volume of small piece”

I sum small contributions to get total

Uniform Non-uniform

length density Q = λl dQ = λ dl −→ Q =

∫
λ dl

area density Q = σA dQ = σ dA −→ Q =

∫
σ dA

volume density Q = ρV dQ = ρ dV −→ Q =

∫
ρ dV
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Calculus II project problem

Consider the problem of computing the total number of bacteria in
a circular petri dish. The bacteria colony is more dense at the
center than at the edges of the petri dish. Let r denote radial
distance from the center of the dish measured in centimeters (cm).
Let σ be the density of the bacteria colony, measured in number
per square centimeter (#/cm2). Note that σ varies with radius r .

(a) Construct a definite integral to compute the total number of
bacteria in a petri dish of radius R.

(b) Compute the total number of bacteria if the density is σ0 at
the center of the dish and decreases linearly to zero at the
edge of the dish.

(c) Get a numerical value for the total number with the density as
in (b) and the values σ0 = 5.4× 103 per cm2 and R = 5.5 cm.
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Solution outline

definition: dm = σdA

geometry: dA = 2πr dr

substitution: dm = σ2πr dr

summing: m =

∫ R

0
2πσr dr
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Calculus II exam question

A rectangular piece of cloth is soaked in dye and then hung
vertically to dry. As the cloth dries, the dye flows down so that
more ends up at the bottom than at the top. The dried dye has a
mass density that varies linearly from zero at the top edge to a
maximum value at the bottom edge. Use H for the height of the
cloth, W for the width of the cloth, and σ0 for the maximum
density.

(a) Set up and evaluate an integral to compute the total mass of
dye in the cloth.

(b) Explain why your result in (a) makes sense.

dm = σ dA = σW dh

m =

∫ H

0
σW dh =

∫ H

0

(σ0

H
h
)
W dh = · · · =

1

2
σ0WH
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Calculus III exam question

Charge is distributed on a hemisphere of radius R. Think of this as
the northern hemisphere of the earth. The area charge density is
proportional to the distance from the plane containing the equator
with a value of 0 on the equator and a value of σ0 at the north
pole. Compute the total charge on the hemisphere in terms of R
and σ0.



Calculus III project problem
A hydrogen atom consists of one proton and one electron. A free
hydrogen atom is one that experiences no external forces. In a free
hydrogen atom, the electron can be in one of infinitely many
discrete states. These states are labeled by three integers, usually
denoted n, l , and m. For each state, there is an electron location
probability density that gives the probability density (per volume)
for the location of the electron as a function of position (measured
with respect to the proton).
The n = 3, l = 2, m = 0 state of a free hydrogen atom has an
electron probability density (per volume) given by

ρ(r , φ, θ) =
1

39366π
r4e−2r/3(3 cos2 φ− 1)2

where (r , φ, θ) are spherical coordinates as we use them in class.
The origin of the coordinate system is the location of the proton.
The radial coordinate r is measured in units of Bohr radii where
the Bohr radius is equal to about 5.3× 10−11 meters. (So, for
example, r = 2 means a radial distance of 2 Bohr radii.)



Calculus III project problem (continued)

1. Compute an expression for the probability of finding the
electron between r = a and r = b for a hydrogen atom in this
state.

2. Compute the probability of finding the electron in each of the
unit intervals r = k to r = k + 1 for k between 0 and 25.
Identify the interval in which the electron is most likely to be
found.

3. Compute the probability of finding the electron anywhere in
space. Does this result make sense?
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Recap

I using density as a theme for integral calculus and
multivariable calculus provides context for applications
targeting students outside physics & engineering

I using density provides a framework for motivating all flavors
of integral (single, double, triple, line, surface) for
scalar-valued functions

I using density might help students gain comfort and
understanding they might not otherwise get explicitly
elsewhere

I welcome any suggestions for improvements or extensions.
martinj@pugetsound.edu
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